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Abstract 

This paper uses an AGCM to show that the cooler North Atlantic SST anomalies in summer 

can produce a Rossby wave-like teleconnection pattern strengthening the Siberian High in 

winter and next spring. The stronger Siberian High enhances the continent northerlies over 

East Asia and the associated cyclonic circulation over the western North Pacific, which 

provides a tropical westerly background for occurrence of the westerly wind bursts. The 

stronger northerlies over East Asia can also induce frequent cold surges, which tend to 

produce the equatorial westerly wind anomalies in the western Pacific for initiating an El 

Niño event. 
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1. Introduction 

Many remote factors can influence on ENSO, such as the Northern Hemisphere 

Annular Mode (NAM, Nakamura et al., 2006) and the Atlantic sea surface temperature (SST) 

variability (e.g. Timmermann et al., 2005; Dong et al., 2006; Wang, 2006; 

Rodríguez-Fonseca et al., 2009; Wang et al., 2009a; Wang et al., 2009b and 2011; Ding et al., 

2012). Nakamura et al. (2006) further examined the lead-lag relationship between the NAM 

and ENSO, and simulated the impacts of the NAM on ENSO by modulating the westerly 

wind bursts (WWBs). The variations in the Atlantic can influence ENSO through oceanic 

(Timmermann et al., 2005) or atmospheric teleconnections (Dong et al., 2006; Wang, 2006; 

Rodríguez-Fonseca et al., 2009; Wang et al., 2011; Ding et al., 2012). Timmermann et al. 

(2005) suggested that a cooling in the North Atlantic associated with the weakened Atlantic 
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thermohaline circulation leads to weakened ENSO variability and results in a suppression of 

ENSO variance. The coupled ocean–atmosphere model results (Dong and Sutton, 2007) have 

suggested that the weakening ENSO variability with a deepening mean thermocline and a 

reduction of vertical stratification of the equatorial Pacific results from the large-scale 

atmospheric circulation changes associated with anomalous diabatic heating in the warm 

tropical Atlantic. Wang (2006) proposed that the equatorial Atlantic SST anomalies can 

induce an ENSO event by changing the Walker circulation and ocean dynamics, which is 

confirmed by modeling studies (Wang et al., 2009a; Rodríguez-Fonseca et al., 2009). 

In addition to the impacts from the tropical Atlantic, Wang et al. (2009b) recently 

found that the ENSO variability is closely related to the North Atlantic SST variations. 

Moreover, Wang et al. (2011) proposed a possible mechanism that the North Atlantic cold 

SST anomalies could impact El Niño outbreak by changing the East Atlantic/West Russia 

teleconnection from the North Atlantic across Eurasia at the mid-latitude and the East Asian 

winter monsoon, which results in equatorial westerly wind anomalies and can thus initiate an 

El Niño event. However, these results are based on the composite and linear correlation 

analyses of observational data. The correlation does not necessarily guarantee a cause-effect 

relationship and the numerical model experiments are needed to investigate the associated 

physical processes linking the North Atlantic SST and westerly wind anomalies over the 

tropical Pacific. The purpose of the present paper is to examine the hypothesis suggested by 

Wang et al. (2011) using idealized atmospheric general circulation (AGCM) experiments. 

The paper demonstrates that the mechanism proposed by Wang et al. (2011) does operate in 

the AGCM simulations, thus supporting the connection between the North Atlantic cooling 
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and warm ENSO events. 

 

2. Data sets and model 

The data sets used in this paper include the monthly zonal wind at 10 m from the 

European Centre for Medium-Range Weather Forecasts (ERA40) during 1958–2001 and the 

monthly UK Met Office’s Hadley Centre’s Sea Ice and Sea Surface Temperature (HadISST1) 

(Rayner et al., 2003). The Nino-3.4 index is calculated as SST anomalies (SSTA) averaged 

over the region between 5ºS–5ºN and 170ºE–120ºW. Following Wang et al. (2009b, 2011), a 

North Atlantic Index (NAI) by averaging SSTA over the region of 30º-50ºN and 10º-50ºW is 

used as an indicator of the North Atlantic SST variation. 

The LMDZ (the Laboratoire de Météorologie Dynamique Model with Zoom 

Capability at Paris, France) AGCM used in this study is based on a finite-difference 

formulation of the primitive equations (Sadourny and Laval, 1984). The dynamical equations 

are discretized on a longitude-latitude Arakawa C-grid with zooming capability. 

Discretization in the vertical is done by using a hybrid σ–p coordinate system with 19 levels. 

The version of the model used in this study is described in detail by Hourdin et al. (2006). 

The current model has 120 points in longitude (evenly spaced) and 90 points in latitude, 

which corresponds to a resolution of 3º in longitude and 2º in latitude.  

 

3. Results 

3.1 Observed relationship between the North Atlantic and tropical Pacific 

The lag correlations of the NAI index with the Nino-3.4 index and the 10 m zonal 
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wind in the tropical Pacific are shown in Fig. 1. It is seen that the summer North Atlantic 

SSTA is negatively related to the tropical eastern and central Pacific SSTA in succeeding 

year (note that the correlation coefficients in Fig. 1 are multiplied by -1). The significant 

maximum correlations are located on the eastern and central Pacific in the following winter 

and spring (Fig. 1a). Here, the more reliable HadISST1 during 1982-2003 is used because of 

in situ and bias-adjusted satellite SSTs combined from 1982 onward. These results are similar 

to these obtained from the longer period data (Wang et al., 2011). That is to say, when there 

are cooler SSTA over the North Atlantic during boreal summer, the eastern and central 

tropical Pacific tends to be warmer in succeeding winter and spring.  

An anomalous westerly wind over the tropical western Pacific is well known to 

trigger El Niño outbreak (Wyrtki, 1975). Therefore, we focus on the NAI-induced westerly 

wind anomalies over the tropical Pacific where the WWBs associated with El Niño usually 

occur. Figure 1b demonstrates the significant relationship between the summer North Atlantic 

SSTA and the zonal wind at 10 m over the central tropical Pacific prior El Niño occurrence. 

It is indicated that after a cooler North Atlantic in summer, the westerly wind anomalies are 

expected to occur over the tropical central Pacific in succeeding winter and spring, which 

provides a necessary condition for an El Niño outbreak (Barnett et al., 1989).  

 

3.2 Model results 

We performed two groups of ensemble AGCM runs: CTRL and NATL. In the CTRL 

run, the AGCM is forced by climatological SST, with a model integration from January 1 to 

December 31 (360 days not 365 days because of the property of this model). In the NATL 
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run, the model is integrated from January 1 in Year (-1) to December 31 in Year (0) (720 

days). Since the SST anomalies in the North Atlantic during June-July-August (JJA) are 

significantly correlated to the Nino-3.4 index lagging four to thirteen months, SST forcing in 

the NATL run is climatological value during the whole integration except for the JJA season 

of Year (-1). During JJA of Year (-1), the SST in the North Atlantic (30º-50ºN, 10º-50ºW) is 

the averaged value of different years prior to El Niño events. These selected years are 1962, 

1964, 1967, 1971, 1975, 1976, 1978, 1981, 1985, 1990, 1992, 1993, and 1996, which is used 

in the composite analysis in Wang et al. (2011). These years are selected in according to the 

Oceanic Niño Index of NOAA from the website 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). It 

is noted that 6 experiments are performed based on different initial condition in both the 

CTRL and NATL runs. We analyze and present the ensemble mean results. 

 Figure 2 shows the response of anomalous wind at lower level to the cooler North 

Atlantic SSTA forcing from October (-1) to April (0). The significant westerly wind 

anomalies appear in the tropical central-eastern Pacific, which is consistent with the observed 

results of Wang et al. (2009). The wind vector with significant westerly component is seen in 

the region (15°S-15°N, 160°E-140°W) where the WWBs are usually identified (Harrison and 

Vecchi, 1997), indicating that these westerly wind anomalies could be helpful in generating 

eastward propagating equatorial Kelvin waves to trigger an El Niño event.  

 Many previous studies have shown that the westerly wind anomalies triggering El 

Niño are closely related to the East Asian winter monsoon (Chu, 1988; Yu and Rienecker, 

1998; Zhou et al., 2007a and 2007b). To explain the mechanism how the westerly wind 
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anomalies over the tropical Pacific respond to the North Atlantic SST variation, the 

large-scale atmospheric circulations over the Northern Hemisphere are analyzed. At 

mid-latitude from the North Atlantic across Eurasia during autumn [Oct (-1)] and spring [Apr 

(0)], a Rossby wave-like teleconnection at low-mid level with two anomalous positive 

geopotential height centers over England/Denmark and Lake Baikal and two significantly 

anomalous negative centers over the North Atlantic and the northeast Caspian Sea is 

reproduced in Fig. 3 although the positive anomalies over Lake Baikal are insignificant 

during Apr (0). It is known that the SST change can influence the atmosphere by altering the 

surface heat fluxes. The observed (Wang et al., 2011) and other atmosphere-only model 

(Keeley et al., 2012) results suggest that through impacts on atmospheric heating, the cooler 

SST perturbations in the North Atlantic can influence not only the local atmospheric 

circulation but also the downstream large-scale circulation as far as in the Siberia. Our model 

response to a cool North Atlantic is similar to the observed result (see Fig. 8 of Wang et al., 

2011). It indicates that the summer cooler North Atlantic SSTA can influence the anomalous 

geopotential height variations over the Far East during the subsequent winter and spring, 

which strengthens the intensity of the Siberian High. The enhancement of the Siberian high 

thus results in the increasing northerly winds over the East Asia (Fig. 4). The maintenance of 

the stronger northerly wind anomalies indicates that there are frequent synoptic-scale cold 

surge events during winter and spring (Wang et al., 2005), which tends to trigger WWBs and 

then initiate an El Niño (Chu, 1988; Yu and Rienecker, 1998). On the other hand, the stronger 

northwesterly wind anomalies are associated with the anomalous cyclonic circulation over 

the western and central North Pacific (also Fig. 2), which provide the tropical westerly 
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background for occurrences of the WWBs. 

 

4. Summary  

Observational data reveal a significant relationship between the North Atlantic SSTA 

in summer and the tropical Pacific SSTA as well as the lower-level zonal wind anomalies in 

the following winter and spring. El Niño is usually initiated in spring, preceded by the 

anomalous westerly wind over the tropical Pacific in association with cooler North Atlantic 

SSTA in previous summer. The AGCM experiments with summer North Atlantic SST 

forcing strongly confirm and support the observed results. The model experiments show how 

a cool North Atlantic Ocean can influence El Niño by exciting the westerly wind anomalies 

at low-level over the tropical central Pacific. The cool North Atlantic SST in summer can 

generate a Rossby wave-like teleconnection pattern at mid-latitude, which strengthens the 

Siberian High during winter and spring. The resultant stronger Siberian High leads to the 

increase of northerly winds from the mid-latitude East Asia to the tropics and induces 

frequent cold surge, which thus modulates WWBs over the tropical western Pacific and 

triggers El Niño.  

It is suggested that the North Atlantic SST anomalies could influence the East Asian 

climate via a stationary wave-like teleconnection (Gu et al., 2009; Wang et al., 2011). The 

North Atlantic SST anomalies-induced extratropical forcing associated with El Niño is 

related to the East Asian winter monsoon as shown in this study. However, ENSO is 

suggested to link with other extratropical forcing over the North Pacific, such as the Pacific 

Decadal Oscillation (Chan and Zhou, 2005; Zhou et al., 2007a; Wang et al., 2009b) and the 
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North Pacific Oscillation (Alexander et al., 2010). The comparison of the impacts of the 

North Atlantic and the North Pacific on ENSO needs to be further studied.   
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Figure Captions 

Figure 1. (a) Lagged correlation coefficients between the NAI and Nino-3.4 index during 

1982-2003. The X-Axis represents the months which the Nino3.4 index is lagged. The 

shadings indicate the correlations significant above the 90% confidence level (effective 

degrees of freedom are 17). (b) Linear coefficients between summer (JJA) NAI and the 

tropical (averaged between 10ºS and 10ºN) zonal wind at 10 m from simultaneous summer to 

next spring during 1958-2001. Pre El Niño of Y-Axis label means the year before El Niño 

onset, and El Niño indicates the onset year. The shadings indicate the correlations significant 

above the 90% confidence level (effective degrees of freedom are 42). In (a) and (b), the 

correlation coefficients are multiplied by -1. The zero contour line is thickened. The contour 
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interval is 0.1.   

 

Figure 2. Evolution of the differences of wind (m s-1) at 1004-hPa averaged between NATL 

and CTRL runs from Oct (-1) to Apr (0). The red vectors indicate the zonal wind exceeding 

the 90% significant level, based on Student’s t test. 

 

Figure 3. Evolution of the differences of geopotential height (m2 s-2) at 1004-hPa between 

NATL and CTRL runs from Oct (-1) to Apr (0). The contour interval is 0.5 m2 s-2. The zero 

contour line is thickened. The blue and red shadings indicate values less than -0.5 and more 

than 0.5, respectively. The green contours filled with the dots indicate the geopotential height 

exceeding the 90% significant level, based on Student’s t test. 

 

Figure 4. The difference of wind vector (m s-1) at 847.8-hPa averaged from Dec (-1) to May 

(0) between NATL and CTRL runs. The red vectors indicate the meridional wind exceeding 

the 90% significant level, based on Student’s t test.  
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Figure 1. (a) Lagged correlation coefficients between the NAI and Nino-3.4 index during 
1982-2003. The X-Axis represents the months which the Nino3.4 index is lagged. The 
shadings indicate the correlations significant above the 90% confidence level (effective 
degrees of freedom are 17). (b) Linear coefficients between summer (JJA) NAI and the 
tropical (averaged between 10ºS and 10ºN) zonal wind at 10 m from simultaneous summer to 
next spring during 1958-2001. Pre El Niño of Y-Axis label means the year before El Niño 
onset, and El Niño indicates the onset year. The shadings indicate the correlations significant 
above the 90% confidence level (effective degrees of freedom are 42). In (a) and (b), the 
correlation coefficients are multiplied by -1. The zero contour line is thickened. The contour 
interval is 0.1. 
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Figure 2. Evolution of the differences of wind (m s-1) at 1004-hPa averaged between NATL 
and CTRL runs from Oct (-1) to Apr (0). The red vectors indicate the zonal wind exceeding 
the 90% significant level, based on Student’s t test. 
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Figure 3. Evolution of the differences of geopotential height (m2 s-2) at 1004-hPa between 
NATL and CTRL runs from Oct (-1) to Apr (0). The contour interval is 0.5 m2 s-2. The zero 
contour line is thickened. The blue and red shadings indicate values less than -0.5 and more 
than 0.5, respectively. The green contours filled with the dots indicate the geopotential height 
exceeding the 90% significant level, based on Student’s t test. 
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Figure 4. The difference of wind vector (m s-1) at 847.8-hPa averaged from Dec (-1) to May 
(0) between NATL and CTRL runs. The red vectors indicate the meridional wind exceeding 
the 90% significant level, based on Student’s t test.  


